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ABSTRACT 

 

 

The article investigates the long memory effect on risk measures such as Value 

at Risk (VaR) and Conditional Value at Risk (CVaR). In addition to a more 

realistic representation of data, our results affirm that much more reliable 

conclusions will certainly be drown if a more classes of Copula functions can  

be used. 
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1. Introduction 

Portfolio optimization is one of the most attracting fields in decision-making. The 

benefit of using the variance in the mean-variance Markowitz's formulation, for 

quantifying portfolio risk, is principally due to the simplicity of the computation. Many 

researchers such as Bai et al. (2007) affirm that in modern financial analysis, evidence 

of non normality of the distribution of financial return variables grows every year. As 

far as the normality assumption is concerned, it is also often made for statistical 

inference.
1
 Value at Risk (VaR) is one of the most popular measures due to its 

simplicity, which has achieved the high status of being written into industry regulations. 

However, as a risk measure, VaR has recognized limitations. Firstly it lacks 

subadditivity and convexity (Artzner et al. (1999)). Indeed, VaR is a coherent risk 

measure only when it is based on the standard deviation of elliptical distributions. In 

addition, it has been shown in Andersson et al. (1999) that the problem of minimizing 

VaR of a portfolio can have multiple local minimizes. Artzner et al. (1999) propose the 

main properties that a risk measures must satisfy, thus establishing the notion of 

coherent risk measure. Conditional Value-at-Risk, or CVaR for short, is defined as the 

weighted average of VaR and losses strictly exceeding VaR for general distribution 

(Rockafellar et al. (2002)). The CVaR risk measure has been proved to be a coherent 

risk measure in many studies such as Pflug et al. (2000), Acerbi et al. (2001). After that, 

other classes of measures have been proposed, each with distinctive properties: 

Conditional Drawdown-at-risk (CDaR) in Chekhlov et al. (2000), ES in Acerbi et al. 

(2001), convex measures in Follmer et al. (2002), and deviation measures in Rockafellar 

et al. (2006). 

Clearly, the VaR and the CVaR of a portfolio depends on the behavior of the individual 

assets in the portfolio and also on the dependence structure between them. In particular, 

the dependence in the tails of the distribution strongly influences the VaR and CVaR 

calculation (Embrechts et al. (1999) and Kiesel et al. (2002)). Thus, the correlation 

coefficient, which is not adequate to measure the dependence in the tails, may lead to 

inaccurate estimations of VaR and CVaR. Alternatively, Ausin et al. (2010) affirm that 

copulas provide a useful tool to model tail dependence and obtain precise VaR and 

CVaR estimations. Besides the applications of VaR and CVaR in risk measurement, 

they also provide useful tools in optimal portfolio selection. Several research papers 

used various types of Copulas, VaR and extreme value theory to study behaviors of 

financial variables such as Li et al (2012) and Chaithep et al (2012). 

As introduced in Agrawal (2008), copula theory effectively captures the non-linear 

inter-dependence. Based on Student t-copula, assuming marginal distribution as 

Gaussian in the center and EVT distribution in the tail, the author compute the market 

risk using the VaR and CVaR measures. This techniques neglect the long range 

dependence, always detected in financial data. Our aim is to prove that it a novel 

                                                           

1
 Gourieroux, 2005 
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method but it model both market prices and shocks persistence in their, which distort 

investors' preferences. 

This paper is organized as follows. In section2 and section3, we expose brief definitions 

of respectively Copulas theory and long memory process. Next, we present our 

empirical results. The final section is the conclusion.  

 

2. Copula for Modeling Dependence 

Our basic reference in this section is the famous book of Nelsen (1999), second edition, 

titled "An introduction to copulas". We begin with the definition of copulas and 

formulation of theorem of Sklar mentioned in the introduction (Nelsen (1999), 

Embrechts et al. (2002), McNeil et al. (2005), Nelsen (2006)).  Theorem of Sklar 

elucidates the role that copulas play in the relationship between multivariate distribution 

functions and their univariate margins. 

Theorem of Sklar (1959): Let F is a joint distribution function with bivariate marginal 

distributions F1 and F2. Then there exists a 2-dimensional Copula C such that for all 

(x1,x2) [- , + ]
2 

1 2 1 2( , ) ( ( ), ( ))F x x C F x F x  

Furthermore, if the marginals are all continuous, C is unique. Conversely, if C is a 

copula and F1 and F2 are distribution functions, then the function $F$, initially 

mentioned, is a joint distribution function with margins F1 and F2. 

This theorem first appeared in Sklar (1959). The name "copula" was chosen to 

emphasize the manner in which a copula "couples" a joint distribution function to its 

univariate margins.
2
 

Statistically, a two-dimensional Copula is a function C that has the following properties: 

1.    0,1 0,1DomC    

2.    0, ,0 0C u C u   and     1, ,1C u C u u  ,  0,1u   

3. C est 2-increasing:    

       1 2 1 2 1 2 1 2, , , , 0C C u C u C u u       ,    
2

1 2, 0,1u u   and when  

1 10 1u      and 2 20 1u    . 

Let  1 2,U u u  be random vector with u1 and u2  are uniform random variables, then we 

have: 

   1 2 1 1 2 2, Pr ,C u u U u U u    

                                                           

2
 See Nelsen (2006). 
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Copulas allow us to consider more general multidimensional distributions 

independently of marginal distributions and hence the implementation of multivariate 

models becomes easier. 

3. Long Memory Process 

The long memory, introduced in the early 1950s, has changed the degree of market 

development efficiency with Hurst work. Further developments have been made by 

Mandelbrot(1969a), Mandelbrot et al. (1972), Granger (1980) and later on by Hosking 

(1981). The study of this property is generally based on the ARFIMA model (when long 

memory is in mean) and on the Fractionally Integrated GARCH (FIGARCH) process 

(when long memory is in the volatility process). 

3.1. ARFIMA process 

A stochastic process with stationary and second order (Xt)t  is defined as a long memory 

if   decreases hyperbolically to zero, where   is the autocorrelation function. 

Formally, if there is a reel   as 0<  <1 and constant c, with c> 0, verifying: 

1
.

lim
h

x c h 






  

Long memory can easily be defined by considering the spectral density of the process 

(Xt)t with frequency  , noted f ( ). A stochastic process with stationary and second 

order (Xt)t  is long memory if there is a frequency  0  that its spectral density is not 

bounded, namely:      
2

0.
d

X ff C   


  , 0  where Cf(.) designates a function 

that varies slowly on 0   and 0<d<1. 

If (Xt)t is an ARFIMA (p, d, q) which may be presented as follows: 

   t tL X L    

With  1
d

t tL 


  , t  is a white noise with variance 2  and   L and  L are 

polynomials of degree respectively p and q. 

3.2. FIGARCH process 

It is introduced by Baillie (1996). Formally, a FIGARCH (p, q) process is given by: 

     21
d

t tL L L        

t : denotes a white noise. 

d: designates parameter of fractional integration. 

  1

1 ... p

pL L L      and   1

1 ... p

pL L L     being two polynomials with roots 

greater than unity. 

The FIGARCH model offers a direct measure of persistence through fractional 

integration parameters. Moreover, the effect of a volatility shock is reduced to a 

hyperbolic component in time, which allows better identifying long-term volatility.  
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The fractional difference parameter d allows the indirect measurement of long-term 

persistence of volatility. 

 

4. Empirical results 

 

The empirical investigation uses monthly financial data such as the Standard and Poor's 

500 COMPOSITE, Dowjones Industrial (DJIND) and CAC40 French index, for the 

period going from 01/01/1999 to 25/03/2011. It is necessary to have a stationary series. 

Thus we are interested in logarithm daily prices, resulting in a total of 3190 

observations. 

 

TABLE1: Statistics of the data 

 DLCAC40 DLDJIND DLSP500 

Mean 1,1313E-004 8,8350E-005 8,8027E-005 
variance 2,3083E-004 1,5402E-004 1,7637E-004 

Maximum 0,1059 0,1051 0,1096 

Minimum -0,0947 -0,0820 -0,0946 

Skewness 0,0534 -0,0039 -0,1123 

Kurtosis 8,1910 10,7880 10,7105 

   

 

 

FIGURE1: The row data and their first difference of log 
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FIGURE2: The ACF and PCF of the series 

 

4.1. Modeling tails of asset distributions 

The tail modeling using an Extreme Value distribution requires the data to be 

independent and identically distributed (i.i.d.). When assessing interdependencies, it is 

important to take into consideration the property of asymmetric propagation of shocks. 

For a given pair of financial returns, their joint (row) excesses typically are not 

identically distributed (i.d.). As several studies, we may interpret the observed 

asymmetry in the markets joint behavior as an intrinsic characteristic not just due to 

volatility. We provide examples of such situations. The next table summarizes the 

GPD's parameters of each financial distribution. The parametric estimation of GPD is 

done using the Maximum Likelihood technique. 
3
 

TABLE2: Estimated parameters of tail distributions 

 Xi Beta funval 

DLCAC40 -0.0393 0.0132 -336.3414 
DLDJIND 0.1942 0.0093 -348.3189 

DLSP500 0.2164 0.0097 -341.8847 

 

4.2. Long memory estimations 

Several studies highlight the property of long memory in the variance process. It is 

usually characterized by the FIGARCH model.
4
 Though, Baillie et al. (1996) affirm that 

it must verify some conditions such as the positivity of the conditional variance and the 

                                                           

3
 We estimate all the tail distributions using 100 observations. 

4
 Before assuming long memory, we apply the test of Wald about the existence of an IGARCH and 

different long memory test such as R/S test, variance-ratio test. 



                                                                The Empirical Econometrics and Quantitative Economics Letters        65 

 

 

stationarity of the process. When estimating, the positivity constraint for the FIGARCH 

model is observed. We don't have regressors in the conditional mean. The variance 

equations include the FIGARCH (0, d, 0) model which is estimated with BBM's method 

(Truncation order: 1000). We don't have regressors in the conditional variance. The 

residual distribution is supposed to be a normal distribution. The results are regrouped 

in next table.
5
 

TABLE3: Estimation results 

 DLCAC40 DLDJIND DLSP500 

Cst(M) 0.00069 (0.00018) 0.000393 (0.00015) 0.0004 (0.000135) 
AR(1) 0.65133 (0.10034) -0.042337 (0.0174) 0.71235 (0.09425) 

MA(1) -0.7089 (0.10639) - -0.7711 (0.08719) 

Cst(V) - 0.014729 (0.00522) 0.01657 (0.00601) 

d-FIGARCH 0.44957 (0.045516) 0.849486 (0.04093) 0.833175 (0.0426) 
GARCH(Beta1) 0.419055 (0.05382) 0.844635 (0.02655) 0.83753 (0.03235) 

 

4.3. Remarks and Discussion 

We estimate the marginal cumulative distribution function (cdf) for each equity index 

by fitting a nonparametric Gaussian kernel in the interior of the data and a parametric 

GPD (Generalised Pareto Distribution) in the upper and lower tails of the data 

(thresholds are evaluated so that to reserve 10% of data for each tail). For fitting a 

copula, we firstly transform the marginals into Uniform [0,1] and then fit a copula to the 

transformed data. We attempt to use two different ways of fitting copula. First, we 

compute the student copula as {Patton (2006a) and put the estimated coefficient in the 

risk measure. Second, we proceed as Agrawal (2008) and assess the correlation 

coefficient empirically using the estimation of the Kendall's tau; estimate the copula 

associated with the data-series, simulate N times from this copula (where N is large), 

form N equally weighted portfolios, compute the risk measure for the simulated returns 

for all N portfolios, compute N empirical estimates of the risk measure and compare it 

with the above data to check the validity. The detailed statistics of the comparison can 

be found in the next table. 

TABLE4: Copula's Estimation using Elliptical Copula 

Equally portfolios dlsp-dlcac dlcac-dldjind dlsp-dldjind 
Gaussian copula 0.511385906 0.499402331 0.8926 
Student copula [0.5139;2.6462

] 

[0.4985;2.6018] [0.8875;3.2691] 
λL 0.3455 0.3402 0.6389 

Kendall’s tau 0.3357 0.3255 0.6926 
ρ 

 

0.5044 0.4905 0.887 

 

                                                           

5
 Values in parenthesis are the standard error for the estimated parameters. 
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The Gaussian copula is, in effect, a student copula with infinite degrees of freedom. 

COPULARND generates values on the unit hypercube, whose marginal distributions 

are uniform. Our estimated degrees are lower; that's why the student is more adequate 

than the normal. But, we do not forget that even if student is more appreciate than the 

gaussian Copula; it uses the same classical correlation coefficient as a copula parameter 

and it is a part of the elliptical class of copula functions. Thus, we are always restrictive 

when using elliptical copula to model the dependence structure. Our aim is to turn to the 

archimedean copulas which can take into consideration tail distributions
6
 and generalize 

the concept of structure dependence. We attempt to estimate the dependence structure 

using different static copula functions such as Clayton, HRT, Gumbel, Rotated Gumbel 

in addition to Student Copula.
7
 The results are summarized in next table. 

 

TABLE5: Copula’s estimation 

 DLSP500-DLCAC40 DLSP500-DLDJIND DLCAC40-DLDJIND 

Optimal copula Frank Frank Frank 
Copula parameter 181.17 448.35 174 

λU 0 0 0 

λL 0 0 0 

 

This does not occur an asymptotic dependence in tail distributions. According to 

Kharoubi-Rakotomalala (2008), this dependence structure gives more weight to the 

center of the distribution than the Gaussian copula. Thus, with Frank copula, centralized 

returns are more correlated than extreme events. Diversification is more important than 

one Gaussian copula. Our result suggests that fat-tailed data does not necessarily have 

dependence structure which take into consideration dependence of extreme events. This 

result is maintained even if we introduce dynamic copula such as time-varying normal 

Copula, time-varying rotated Gumbel copula and time-varying SJC copula. 

Finally, we can compute VaR and CVaR on the conditional distribution on vectors from 

the selected copula
8
. Because of copula functions are non-bijective, we will use the 

algorithm of Genest et al. (1986) to compute conditional distributions.
9
  

 

 

 

 

                                                           

6
 Left tail is more consistent than the right one, so dependence structure can not be a symmetric copula 

function. 
7
 HRT and Gumbel have a very closed characteristics and the same for Clayton and Rotated Gumbel. 

8
 We selected the optimal copula using AIC, BIC and Log Likelihood criteria. 

9
 From the selected copula, we fixe arbitrary one of the two transformed series V and calculate the 

conditional distribution U when V=v. 
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TABLE6: Risk measures using elliptical copulas 

Equally portfolios dlcac-dlsp dlcac-dldjind dlsp-dldjind 

Gaussian VaR1% -0.207575 -0.241097 -0.239411 

Gaussian VaR5% 0.092857 0.089128 0.098605 

Gaussian CVaR1% -0.49360 -0.49163 -0.523948 

Gaussian CVaR5% -0.114684 -0.115124 -0.107483 

Student VaR1% -0.041235 -0.040116 -0.037819 

Student VaR5% -0.022839 -0.022298 -0.020549 

Student CVaR1% -0.055482 -0.05353 -0.052369 

Student CVaR5% -0.034430 -0.033350 -0.031085 

 

The results of Agrawal show that for an equally weighted portfolio, the VaR estimates 

provided by the t-copula are much closer to the empirical VaR value for 95% 

confidence levels. Also, the author affirms that gaussian copula consistently under-

estimates both the risk measures VaR and CVaR at the mentioned confidence level. The 

t-copula however, produces results in close matching, its just that the variability of 

results is higher than that of its Gaussian counterpart; due to the fat-tailed nature of 

marginals. However, the research of Kapil Agrawal in 2008 is significantly restrictive. 

Indeed, the author concentrates on an elliptic copula which is the Student copula. 

Statistically, our goal is to identify the dependency structure of "real" between variables 

but do not require, even if the marginal follow the Student. Our study proves that if we 

leave detect the dependency structure using different classes (elliptical Archimedean), 

the latter may not necessarily be the Student copula. In addition, it is true that our goal 

is better modeling financial time series, but we must not forget that the observed series 

are noisy by the effects of crises. This may confuse investors by over or under 

estimation of risk. Our application shows that the two risk measures based on the 

filtered series are widely different from those based on noisy series. 

 

TABLE7: Risk measures using row and filtered data 

Equally portfolios VaR 1% VaR 5% CVaR 1% CVaR 5% 

dlcac-dlsp -0.037991765 -0.020051602 -0.048410127 -0.030445897 
dlcac-dldjind -0.037258693 -0.019071237 -0.04673039 -0.029372758 

dlsp-dldjind -0.036292113 -0.020073506 -0.052078619 -0.030807756 

filtered dlcac-dlsp -2.666617805 -1.826327832 -3.340567168 -2.39137266 

filtered dlcac-dldjind -2.686825184 -1.815973644 -3.36422503 -2.382704936 

filtered dlsp-dldjind -2.633205231 -1.777082316 -3.34498234 -2.354218377 

 

Also, many remarks can be addressed to the work of Agrawal (2008). Indeed, the author 

considers the student copulas as a non-elliptical distribution.  
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However, literature focusing on copulas affirms that Gaussian copulas and student 

copulas are the only two types of copulas in the elliptical class
10

. Moreover, on the one 

hand, Kapil Agrawal affirms that we must close to more realistic representation of data. 

On the other hand, the author filter the data using an AR (compensates for 

autocorrelation) and GARCH (compensates for heteroskedasticity) filter respectively. 

 

TABLE8: Examples of risk measures using Frank copula 

Equally portfolios VaR 1% VaR 5% CVaR 1% CVaR 5% 

dlcac-dlsp -0,035386 -0,0205975 -0,05315118 

 

-0,0315992 

 
dlcac-dldjind -0,0364797 -0,019562 -0,04955159 

 

 

-0,02949428 

 

 

 

Although that we are far from the filtered values, the use of the more adequate 

dependence structure
11

 gives results much closer to the empirical risk measures’ values 

than the elliptical copula. Thus, using the "real" dependence structure can gives results 

that reflect the real scenarios and then it is not necessary to use the methodology of 

Kapil Agrawal only to have a reliable conclusion. 

 

5. Conclusions 

Our results affirm that, although the novel contribution, the study of Kapil Agrawal is 

restrictive. He uses only the elliptical class of copula rather than using Archimedean 

copula, which can take a more general dependence structure. Moreover, it is necessary 

to focus on data without shocks persistence, which will be done in further research.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           

10
 We can refer to the book of Nelson or the book of Cherubini (2004) or many articles such as those of 

Paul Embrechts Embrechts (1999), Embrechts (2002), Embrechts (2009) 
11

 The results are much closer if the copula parameter is less than the value of 300. In the case of the 

portfolio of dlsp500 and dldj, we have 448.35 as a parameter value of the Franck copula; then we have a 0 

as a value of the risk measures. 
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